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Abstract—Upper limb hemiplegia is a common functional 
disorder among stroke patients, significantly affecting their 
quality of life. To address this issue, robot-assisted upper 
limb rehabilitation training has emerged as a new therapeutic 
approach, breaking through time and space limitations of 
traditional rehabilitation. Based on the above, a home-based 
dual-mode upper limb rehabilitation system is built, 
including teleoperation mode based on a cloud server and 
bilateral mode with fusion of Surface Electromyography 
(sEMG) and Inertial Measurement Unit (IMU). In the 
telerehabilitation mode, patients can receive professional 
guidance and regular training at home, greatly enhancing the 
accessibility of rehabilitation services. The experiments with 
the master side in Beijing City (China) and the slave side in 
three different cities are conducted through a cloud server. 
The slave side is controlled by the master side, and the 
contact force is sent back to the master side. In the bilateral 
mode, the intention of continuous movements across 
subjects can be accurately predicted via the fusion of sEMG 
and IMU, improving the naturalness of human-robot 
interaction. In the subject-independent modeling, the Root 
Mean Square Error (RMSE) under fusion showed a relative 
decrease of 15.0329% (p <10-4) compared to IMU data alone, 
and a significantly greater reduction of 61.9376% (p <10-4) in 
comparison with sEMG data alone. Robot-assisted upper 
limb exoskeleton, cloud-based teleoperation and bilateral 
training based on sEMG and IMU collectively form a new 
rehabilitation system, representing part of the future 
rehabilitation trend. 
 

Index Terms—Upper limb hemiplegia, Exoskeleton-
assisted rehabilitation, Cloud-based telerehabilitation, 
Surface Electromyography (sEMG), Inertial Measurement 
Unit (IMU), Force feedback 

I. INTRODUCTION 
EMIPLEGIA, a common sequela caused by brain 
damage such as stroke, brain trauma, or 
neurodegenerative diseases, seriously affects 

patients’ physical functions and quality of life. Among these 
conditions, upper limb hemiplegia is particularly prominent 
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[1], as it restricts patients’ ability to perform daily activities 
and profoundly impacts their mental health and social 
participation. Due to the crucial role of upper limbs in daily 
life, the rehabilitation of upper limb hemiplegia has become a 
focus point in the medical field. With the advancement of 
medical technology, rehabilitation treatment is increasingly 
regarded as a key approach to enhancing both the quality of 
life and functional recovery for hemiplegic patients. Effective 
rehabilitation can not only help hemiplegia patients regain 
some or even all of their limb functions [2] but also prevent 
complications caused by long-term bed rest and enhance their 
ability to live independently. Therefore, research on the 
rehabilitation of upper limb hemiplegia has become 
particularly important. 

Although traditional rehabilitation has been successful in 
improving functional recovery in patients with hemiplegia [3], 
it relies on the experience of physical therapists. And the 
limited human resources and limited training frequency make 
it difficult to provide sustained, intensive and personalized 
treatment. In response to these challenges, robot-assisted 
rehabilitation systems have gained increasing attention. 
Compared with traditional face-to-face rehabilitation, 
telerehabilitation has shown many significant advantages 
[11]. It breaks geographical and traffic constraints, expands 
service coverage, and reduces time and transportation costs. 
With the smart device and sensor technology, remote systems 
can collect and analyze data in real time, providing 
personalized treatment plans and instant feedback to ensure 
the effectiveness and adaptability of treatment. Atashzar et al. 
[12] built a haptics-enabled robotic neurorehabilitation 
system, in which the framework for neural-network-based 
supervised training is proposed. However, the bulky 
equipment is difficult to adapt to home-based settings, and the 
high cost makes it unaffordable for many patients and their 
families, thus hindering the widespread adoption of 
telerehabilitation technology and the maximization of 
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practical utility. Yi Liu et al. [4] developed a telerehabilitation 
system for home-based training, in which enhanced therapist-
patient remote interaction is considered. However, this system 
is limited to a local area network environment and only 
involves one degree of freedom (DoF) - the elbow joint. These 
limitations mean that the scope of application and function of 
the system need to be expanded, and it cannot fully meet the 
diversified rehabilitation needs of patients. Based on motion 
tracking, Jing Bai et al. [13] presented a cloud 
communication-based rehabilitation system for the upper 
limb. While virtual games can provide interactivity and fun, 
during the early stages of rehabilitation, patients often require 
more precise and personalized physical support and guidance 
than current systems can adequately provide. In summary, the 
existing telerehabilitation systems need improvement in terms 
of device adaptability, cost-effectiveness, functional diversity 
and responsiveness to patients’ personalized needs. These 
issues limit the widespread adoption of the telerehabilitation 
systems and their potential in promoting upper limb 
rehabilitation. 

Bilateral training is becoming an important component in 
post-stroke rehabilitation, which can guide and control the 
affected limb’s movements by capturing signals from the 
healthy limb. This approach not only promotes neuroplasticity 
but also improves rehabilitation outcomes and patient 
engagement. Surface Electromyography (sEMG)-based 
motion intention prediction directly reflects muscle activity, 
which is a natural and friendly human-robot interaction 
method [14][15]. However, these signals are susceptible to 
interference and exhibit significant individual variability. 
Inertial Measurement Units (IMU)-based motion intention 
prediction offers excellent robustness and stability, but it’s an 
indirect way to infer motion intention, potentially limiting its 
ability to achieve natural and smooth human-robot interaction. 
While sEMG is excellent for capturing muscle activity details, 
IMU is superior for posture and motion trajectory estimation. 
The combination of the two can achieve a more accurate and 
natural human-robot interaction in rehabilitation training, 
significantly improving the rehabilitation effect and patient 
treatment experience. Yang et al. proposed an estimation 
method based on a sequential progressive Gaussian filtering 
network to form the complementary advantage of sEMG and 
IMU [16]. However, this study focused on subject-dependent 
models and lacked validation on the corresponding robot 
platform. Stival et al. proposed a subject-independent 
regression model using sEMG and IMU features [17], but 
their work didn’t address angle regression and provide 
comparative explanations. Sun et al. built a feature-based 
convolutional neural network-bidirectional long-short-term 
memory network (CNN-BiLSTM) model to predict knee joint 
angles [18]. In summary, although the combination of sEMG 
and IMU can significantly improve rehabilitation outcomes 
and training experiences, the existing research and 
technologies still face challenges and limitations related to 
signal stability, individual adaptability and practical 
application scenarios. Addressing these issues requires further 

research and technological advancements. 
In this study, a home-based dual-mode upper limb 

rehabilitation system is proposed, including a teleoperation 
mode based on a cloud platform and a bilateral mode with the 
fusion of sEMG and IMU. In the telerehabilitation training, 
with the assistance of one cloud server, therapists can 
remotely control the exoskeleton to drive the movements of 
patients’ affected limb and receive force feedback from the 
robot-assisted side. This enables therapists to perceive the 
interaction force between the affected limb and the 
exoskeleton, allowing them to adjust the rehabilitation 
intensity accordingly. In the bilateral mode, by capturing both 
the sEMG signals generated by muscle activity and 
monitoring the IMU angles of limb movements, a more 
accurate interpretation of patients’ motion intention is 
realized, enhancing the naturalness and precision of human-
robot interaction. Through these two rehabilitation modes, 
regular therapist-in-the-loop telerehabilitation and home-
based self-rehabilitation are facilitated. Therapist-guided 
telerehabilitation can provide professional advice for patients’ 
home-based self-rehabilitation, thereby improving the overall 
effectiveness of bilateral rehabilitation. To sum up, the main 
contributions of this study are as follows: 
(1) Home-based Tele-rehabilitation System: A home-based 

upper limb rehabilitation system utilizing force feedback 
teleoperation has been developed, enabling patients to 
receive professional guidance and perform regular 
training at home. This significantly enhances the 
accessibility and flexibility of rehabilitation services. 

(2) Enhanced Prediction Accuracy of Motion Intention: In 
the bilateral training mode, the intention of continuous 
movements is accurately predicted by fusing sEMG and 
IMU signals, significantly improving the accuracy and 
naturalness of human-robot interaction. 

The rest of the paper is organized as follows. Section II 
introduces the upper limb rehabilitation exoskeleton platform. 
Section III describes the dual-mode upper limb rehabilitation 
system, including the telerehabilitation mode and the bilateral 
mode via a two-branch CNN network utilizing sEMG and 
IMU. Section IV presents the results and discussion. Finally, 
Section V concludes this study. 

II. PORTABLE UPPER LIMB REHABILITATION EXOSKELETON 
Fig. 1 shows the upper limb exoskeleton worn by a subject, 

which includes three passive DOFs for the shoulder 
(abduction/adduction, internal rotation/external rotation, 
flexion/extension) and three active DOFs (elbow 
flexion/extension, wrist flexion/extension and wrist 
internal/external rotation). The mechanical structure mainly 
consists of four parts: the shoulder part, the upper arm part, 
the forearm part, and the wrist part. The shoulder part 
comprises a shoulder back plate and a junction plate. The 
shoulder back plate is attached to the body using two fabric 
straps. The junction plate is connected through a hinge to 
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provide an additional DOF at the shoulder joint. The length of 
the upper and the forearm part can be adjusted to 
accommodate the different arm lengths among subjects. The 
upper arm of the exoskeleton is immobilized with a 
rehabilitation shoulder pad (Aiwecare, Taiwan, China), 
ensuring stability and comfort during use. The wrist part 
includes two active DOFs (wrist flexion/extension and wrist 
internal/external rotation). 
 

 
Fig. 1.  The upper limb exoskeleton worn by one subject. (a) lateral view 
(b) front view. 
 

The elbow rotation is achieved through a joint motor (AK 
60-6, CubeMars, China). The wrist flexion/extension and 
internal/external rotation are each controlled by separate 
brushless motors (EC 16, Maxon, China). The Maxon motors 
are coupled with planetary gearheads (GP 16, Maxon, China) 
and incremental encoders (MR M-512, Maxon, China). The 
ESCON servo controller (Maxon, China) allows direct control 
of Maxon motors via Arduino using a 3-pin interface: Pulse 
Width Modulation (PWM), Clockwise (CW) and Counter 
Clockwise (CCW). The control of the exoskeleton is executed 
through an Arduino, which collects the angle data from IMUs. 
Through Inter-Integrated Circuit (IIC) communication, 
multiple IMUs are connected to the Arduino. For each motor, 

the real-time control is based on an outer position and an inner 
velocity loop. Fig. 2 presents a block diagram illustrating the 
control architecture for the multi-DOF upper-limb exoskeleton 
system. The system is divided into three main sections, each 
corresponding to a different DoF of the rehabilitation 
exoskeleton. 
 

 
Fig. 2.  The overall design of the embedded system of the upper limb 
rehabilitation exoskeleton. 

III. HOME-BASED DUAL-MODE REHABILITATION SYSTEM 
BASED ON THE UPPER LIMB EXOSKELETON 

Fig. 3 provides an overview of the dual-mode rehabilitation 
system, which integrates teleoperation and bilateral training. 
This proposed system comprises three components: the 
therapist side, the robot-assisted limb side and the intact limb 
side. The therapist side and the robot-assisted limb side 
together form the therapist-in-the-loop telerehabilitation 
mode. Meanwhile, the intact limb side and the robot-assisted 
limb side form the bilateral mode. In both rehabilitation 
modes, the upper limb exoskeleton serves as the hardware 
platform for the affected limb side of patients. 

A. Telerehabilitation Mode 
This section introduces the telerehabilitation mode, in 
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Fig. 3.  The overview framework of the dual-mode system based on the telerehabilitation and the bilateral rehabilitation. 
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which one subject (as a therapist) manipulates the HD2 Haptic 
Device (Quanser, Canada) to deliver rehabilitation treatment 
to another subject (as a patient) wearing the exoskeleton (as 
shown in Fig. 4). The therapist can simultaneously perceive 
the interaction force between the patient’s affected limb and 
the exoskeleton. In this study, the way of combining Alibaba 
Cloud Elastic Compute Service (ECS) example and Fast 
Reverse Proxy (FRP) tool is used to enable secure access from 
an internal network (Intranet) service to an external network 
(Internet). The system architecture consists of two main 
components: the ECS instance deployed on Alibaba Cloud as 
a public network proxy server, and the client device situated 
within the user’s local network. The FRP tool is used to 
establish a secure channel between the two devices so that the 
services on the Intranet can be accessed through public IP 
addresses and specific ports. When conducting multi-location 
remote experiments, ensure the consistency of cloud server 
configurations. 
 

 
Fig. 4.  The experimental setup. (a) master side (b) slave side.  
 

The teleoperation involves controlling the three active 
DoFs. (elbow flexion/extension, wrist flexion/extension and 
wrist internal/external rotation). Fig. 5 illustrates the 
corresponding DoF mapping relationship between the master 
side (therapist side) and the slave side (patient side). A direct 
mapping is adopted between the master and slave angles. This 
means that the angle value of each DoF of the master device 
directly corresponds to the angle value of the corresponding 
DoF of the slave device, as shown in (1)-(3).  

4 4th ths_ DoF m_ DoF
θ θ=                              (1) 

5 5th ths_ DoF m_ DoF
θ θ=                             (2) 

6 6th ths_ DoF m_ DoF
θ θ=                             (3) 

Where, 4thm_ DoF
θ , 5thm_ DoF

θ  and 6thm_ DoF
θ  represents the angles 

of elbow flexion/extension, wrist flexion/extension and wrist 
internal/external rotation in the master side, 4ths_ DoF

θ , 5ths_ DoF
θ  

and 6ths_ DoF
θ  represents the angles of elbow flexion/extension, 

wrist flexion/extension and wrist internal/external rotation in 
the slave side. 

The primary reasons for choosing direct mapping include 

the following aspects: (1) Intuitiveness and Ease of Use: 
Direct mapping ensures a one-to-one correspondence between 
the angle values of the master device and the slave device. 
Therapists can precisely control the movements of the device 
on the patient side by adjusting their actions without needing 
additional conversion or calculation. (2) Precision and 
Accuracy: In telerehabilitation training, the accurate 
replication of movements is crucial. Direct mapping ensures 
that every subtle movement of the master device is accurately 
reflected in the slave device without any errors. (3) Real-time 
Performance and Responsiveness: Direct mapping facilitates 
real-time synchronization between the master device and 
slave device, reducing delay and response time. 
 

 
Fig. 5.  The master device and slave device and their DoF mapping. (a) 
HD2 (b) Solidworks model of the exoskeleton.  
 

The operating environment of HD2 is developed in 
MATLAB/Simulink using QuaRC real-time software. QuaRC 
is fully compatible with MATLAB and supports hardware-in-
the-loop simulations. Therefore, the telerehabilitation system 
involved in this study is also based on this operating 
environment.  

During the rehabilitation training process, any loss of 
motion or force information can lead to incorrect guidance, 
potentially affecting the rehabilitation effectiveness and 
possibly causing harm. Therefore, ensuring the accuracy and 
reliability of data is particularly crucial in tele-rehabilitation 
systems. Given this, Transmission Control Protocol (TCP) is 
preferred over User Datagram Protocol (UDP) for its stable 
and reliable transmission capabilities. Although TCP may 
introduce slightly higher latency, this trade-off is justified by 
the reduced risk of data loss or disorder. By prioritizing 
transmission reliability, TCP ensures that motion and force 
feedback during the rehabilitation process are accurately and 
correctly conveyed, thereby providing patients with a safer 
and more effective rehabilitation environment. To further 
enhance communication security, two methods are employed: 
Secure Shell (SSH) tunneling and Transport Layer Security 
(TLS) encryption, which provide robust protection from 
different perspectives. SSH tunneling is employed to create an 
encrypted communication channel, and TLS encryption is 
used to further secure data against interception during 
transmission. 

B. Bilateral Mode via a Two-branch CNN Network 
Utilizing sEMG and IMU 
1) Dataset 

This study involves 10 subjects (labelled as Subject No.1- 
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No.10), including 7 males and 3 females, with an average age 
of 24.30±2.20. All participants are right-handed and free of 
skeletal and neurological diseases. This research is approved 
by the Institutional Review Board (IRB) of Southern 
University of Science and Technology (Ref. No. 20240374 
from January 2025). All subjects provided informed consent 
to participate in this study. All experimental procedures 
follow the Declaration of Helsinki on Medical Research 
involving Human Subjects. 

Fig. 6 illustrates the data acquisition setup. The sEMG data 
is acquired through the Myo armband (Thalmic Labs, Canada), 
which is worn on the left upper limb. The signal sample 
frequency of the Myo armband is 200 Hz. The IMU data is 
acquired through the JY901 (Witmotion, China), which is 
mounted on the left forearm. It adopts a Kalman dynamic 
filtering algorithm, enabling the rapid determination of the 
module’s current real-time motion attitude. The signal sample 
frequency of the IMU is 20 Hz. For joint angle acquisition, the 
Mars visual capture camera (NOKOV, China) is used, which 
acquires the motion characteristics of the upper limb at a 
sampling frequency of 200 Hz. Each volunteer performed 
continuous elbow joint movements for 60 s per time, with a total 
of five times. After each collection, the volunteers returned to a 
relaxed state. To avoid muscle fatigue affecting the quality of 
collected signals, the volunteers take a rest for about one minute 
after each collection. 
 

 
Fig. 6.  Data acquisition. (a) overall acquisition diagram (b) upper arm 
with sEMG, IMU and marker (c) sEMG signal (d) IMU signal 

2) Signal Processing 
Since raw sEMG signals are often interfered by noise, data 

processing is necessary. The high-pass filter at 20 Hz is used 
to eliminate the low-frequency noise. Due to the highly non-
stationary nature of sEMG signals, a sliding window approach 
is adopted to maintain signal stability. Fig. 7 illustrates the 
schematic diagram of the time window segmentation process. 
The sliding window has a length of 250 ms with an overlap of 
200 ms, which meets the real-time control requirement of less 
than 300 ms. The visual capture signals and IMU signals are 
also segmented into windows of 250 ms with an overlap of 
200 ms. The signal is processed according to the above 
window-adding method. The number of sliding windows for 
each subject at each time of experiments can be calculated 
according to (4). 

1 ( )samwin win add
add

N N L L
L

= − +                      (4) 

Where, winN , samN , winL , addL  represents the number of 
sliding windows, the number of sampling points, the window 
length and the window increment for each subject at each time 
of experiments. 
 

 
Fig. 7.  The conversion of sEMG signals to sEMG images via the 
overlapping sliding window. S(a,b) represents the ath segment of the 
sEMG signal from the bth channel. Sa represents the ath segment of 
sEMG signals from all 8 channels. 
 
3) Network Architecture 

This section describes the bilateral mode via a two-branch 
CNN network utilizing sEMG and IMU data. Unlike traditional 
shallow neural networks that rely on manually extracted 
features, a deep neural network can transform the feature 
representation into a new feature space via layer-by-layer 
feature transformation. CNN is adopted to realize the feature 
extraction and estimation of continuous motion intention. The 
output of the convolution layer is shown in (5). 

( * )i i iih f w x b= +                             (5) 
Where, ix  denotes the input of the convolution layer, ih  is the 
ith output feature map, iw is the weight matrix, ib is the bias 
vector, and f (·) represents the activation function. The rectified 
linear unit (ReLU) function is chosen as the activation function. 
The formula of ReLU can be expressed as (6). 

( ) max(0, )ii ih f c c= =                           (6) 
Where, ic  are the results of convolutional operations. 
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Compared with ordinary single-input networks, the dual-
input network can process two kinds of input data, combining 
the respective advantages of sEMG and IMU signals. The core 
challenge in designing a multi-input CNN architecture is 
effectively integrating multiple input features for accurate 
prediction. Common strategies include: early fusion, late fusion 
and hybrid fusion:  

(1) Early fusion: This approach integrates multiple input data 
at the early stage of the network. It is straightforward and can 
fully utilize the complementary information between different 
modal data. However, it may face the problems of scale 
differences between different modal data and feature 
redundancy.  

(2) Late fusion: This method uses independent CNNs to 
extract features from each input data stream, then fuses these 
output features of each CNN at a later stage, such as the fully 
connected layer, through simple concatenation or averaging. 
This approach can flexibly handle different modal data and 
avoid the negative effects that may occur in the early fusion. 
However, it may not fully utilize the interaction between 
different modal data.  

(3) Hybrid fusion: This approach combines the advantages of 
both early fusion and late fusion by fusing at various network 
levels. It requires careful design based on specific application 
scenarios and data characteristics, offering high flexibility but 
increasing complexity. In this study, the late fusion is adopted 
for the dual-input CNN model. 

For sEMG signals ( sEMGx ) and IMU signals ( IMUx ), feature 
extraction is carried out by CNN respectively, and the feature 
representations of fsEMG and fIMU are obtained, as shown in (7) 
and (8). 

( )sEMG sEMGf CNN x=                            (7) 
( )IMU IMUf CNN x=                             (8) 

Then, the two kinds of input features are combined (as shown 
in (9)), and the final prediction result y is obtained through the 
full connection layer (as shown in (10)). 

( , )fusion sEMG IMUf Concatenate f f=                     (9) 
( )fusiony Dense f=                            (10) 

The structure of the dual-input and single-output CNN is 
shown in Fig. 8. The dual inputs are sEMG images with a size 
of 50*8 and IMU images with a size of 5*9, and the output is 
motion angles. For network training parameters, the Adam 
optimization algorithm is employed. It incorporates an adaptive 
learning rate adjustment mechanism, aiming at promoting rapid 
convergence and effectively handling complex high-
dimensional data spaces. Specific settings include a maximum 
of 150 epochs, with each batch containing 128 samples. This 
configuration ensures computational efficiency and enhances 
model performance. The initial learning rate is set to 0.001. To 
prevent potential gradient explosion issues during training, a 
gradient clipping strategy with a threshold of 1 is implemented. 
These parameter choices and optimization settings ensure that 
the model can achieve efficient learning while maintaining 
good generalization capability. 

 
Fig. 8.  The layer illustration of the dual-input CNN model. 

 
4) Evaluation criteria 

To quantitatively evaluate the prediction error, Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE) and 
Correlation of Coefficient (R) are adopted. RMSE (as shown in 
(11)) is the standard deviation between the prediction and actual 
angles. RMSE is more sensitive to larger errors and effectively 
highlights those prediction results that significantly deviate 
from actual outcomes. MAE (as shown in (12)) is the average 
of all absolute errors between the prediction and actual angles. 
MAE directly reflects the average discrepancy between the 
predicted and actual values, and it is not influenced by extreme 
values, making it particularly useful for assessing the overall 
prediction accuracy of models. R (as shown in (13)) is a value 
between -1 and 1 that indicates the correlation between the 
prediction and actual angles. While R does not directly indicate 
the magnitude of prediction errors, it evaluates the model’s 
fitting effectiveness from a different perspective, providing 
insight into how well the model captures the underlying trends 
and patterns in the data. 
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Where xi represents the prediction angles at the ith data 
point, x

_

 is the average value, yi means the actual angles (visual 

capture angles) at the ith data point, y
_

 is the average value, and 
N is the total number of data points. 
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Additionally, a one-way ANOVA is conducted to assess the 
statistical difference obtained by different models. The level of 
statistical significance is set to p < 0.05. 

Further, to calculate the delay between IMU angles and 
motor angles, cross-correlation is adopted. For IMU angles 
(x(n)) and motor angles (y(n)), where 𝑛𝑛=0, 1, ..., 𝑁𝑁−1 represents 
the sample index and 𝑁𝑁 is the signal length. Firstly, the cross-
correlation function ( ( )xyR τ , whereτ  is the delay parameter) 
between x(n) and y(n) is calculated, as shown in (14). Then, the 
delay τ̂  that maximizes the cross-correlation function ( )xyR τ  
is identified, as shown in (15). 

1

0
( ) ( ) ( )

N

xy
n

R x n y n
τ

τ τ
− −

=

= + ⋅∑                       (14) 

Note that when 𝜏𝜏 is negative, it indicates that 𝑥𝑥 lags behind 
y; when τ is positive, it indicates that 𝑥𝑥 leads y. 

ˆ arg max ( )xyR
τ

τ τ=                                 (15) 

IV. EXPERIMENTAL RESULTS 

A. The Performance of the Upper Limb Exoskeleton 
Bilateral training based on IMU is conducted using the 3-

DoF upper limb rehabilitation exoskeleton. An IMU is worn on 
the healthy limb side, then it captures the movements of the 
healthy side and subsequently controls the exoskeleton to drive 
the motion of the affected limb side.  

Firstly, the stability of the upper limb rehabilitation 
exoskeleton is tested through repeated trials. The movements of 
the exoskeleton are recorded to evaluate whether it operated 
normally, i.e., whether it followed the expected trajectory. 
Three groups of experiments are conducted, with 10 trials in 
each group. No failures are observed across all tests, indicating 
that the exoskeleton operates safely and stably. Secondly, the 
motion trajectory of the exoskeleton is recorded and analyzed. 
The master side refers to the patient’s unaffected limb, on which 
the IMU is mounted. The IMU captures the motion data from 
the master side, which is then used to control the exoskeleton 
and drive the affected side to perform corresponding 

movements. Fig. 9 shows the motion angles and error 
distribution obtained from IMU-based testing. 

According to (14) and (15), the control delay of the three 
DOFs is calculated, resulting in approximately 0 ms, 150 ms 
and 150 ms, respectively. 

B. The Evaluation of the Telerehabilitation System 
In the telerehabilitation system, communication delay and 

control delay are key factors that affect the treatment 
outcomes and patient experience. The telerehabilitation 
system is designed to connect medical professionals with 
patients via the internet, enabling patients to receive 
professional rehabilitation guidance and services at home or 
in other non-medical settings. To ensure the effectiveness and 
security of such systems, it is crucial to evaluate both 
communication latency (that is, the time required for data to 
travel from the sending side to the receiving side) and control 
latency (the time interval between the issuance and execution 
of an instruction). 
1) Communication delay 

To evaluate the effectiveness of the telerehabilitation 
platform, a remote experiment is conducted. The master side 
of the experiment is set up in Beijing (China), while the slave 
side is located in three different regions: Beijing (China), 
Shenzhen (China) and Takamatsu (Japan). In the experiment, 
an operator who acted as a therapist manipulates the handle of 
the HD2 haptic device to generate motion signals. These 
signals are transmitted in real time via a cloud server to the 
slave side, which is used to control the movements of the 
exoskeleton-assisted limb. At the same time, the contact force 
data between the patient’s affected limb and the rehabilitation 
exoskeleton is also transmitted back to the master side in real 
time, allowing the therapist to perceive the interaction process 
instantly. The experiment is conducted between 7:00 a.m. and 
8:00 p.m. (Beijing Time), covering the major daytime activity 
periods. For each slave location, five repetitions of the 
experiment are conducted per hour to ensure data diversity 
and reliability. Each experiment lasted 50 s, which is 
sufficient to capture stable motion patterns and contact force 

 
Fig. 9.  The testing results of the upper limb exoskeleton. (a) motion angles of the 4th DoF (b) motion angles of the 5th DoF (c) motion angles of 

the 6th DoF (d) error angles of the 4th DoF (e) error angles of the 5th DoF (f) error angles of the 6th DoF. 
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variations while avoiding data redundancy due to excessive 
duration. All motion signals and contact force data generated 
during the experiments are recorded in detail for subsequent 
analysis. 

 With the telerehabilitation platform, therapists can provide 
direct kinesthetic guidance to stroke patients. A fixed motion 
trajectory is set on the master side to ensure consistent 
experimental conditions, and then a more accurate and 
intuitive assessment of differences in communication delays 
across various scenarios is determined. This approach 
eliminates the variability caused by changes in movement 
trajectory, improves the reliability of delay time 
measurements, and facilitates an in-depth analysis of the 
factors influencing the data transmission efficiency in the 
telerehabilitation system. Fig. 10(a)-(c) presents the motion 
trajectory over time, with the slave side located in Beijing, 
Shenzhen and Takamatsu, respectively. The motion trajectory 
exhibits periodic fluctuations, indicating that the patient is 
undergoing repetitive rehabilitation training. The therapist is 
also able to perceive the contact force during the training 
process. Fig. 10(d)-(f) illustrates the relationship between 
motion angles and contact force during a rehabilitation 
process using the exoskeleton. Both motion angles and contact 
force exhibit periodic fluctuations, which are characteristic of 
repetitive rehabilitation movements. There is a clear 
correlation between the peaks and troughs of motion angles 
and contact force. When the motion angle reaches its peak, the 
contact force also tends to be at its maximum. The timing of 
the peaks and troughs in both signals is closely aligned, 
indicating that the exoskeleton is effectively tracking and 
responding to the patient’s movements. 

Fig. 11 presents the hourly average communication delay 
(average value, AVE) and its standard deviation (STD), from 

7:00 a.m. to 8:00 p.m. (Beijing Time). The bar chart with error 
lines clearly illustrates the communication delays and their 
variability across different locations. The blue, orange, and 
gray bars represent the communication delays in Beijing 
(China), Shenzhen (China), and Takamatsu (Japan), 
respectively. For Beijing (blue), the communication latency is 
generally low, with short error bars indicating low variability. 
For Shenzhen (orange), the communication delay is moderate, 
with correspondingly moderate error bars and variability. For 
Takamatsu (gray), in some cases, the communication delay is 
high, as reflected by longer error bars and greater variability. 
 

TABLE I 
THE TIME DELAY OF DATA TRANSMISSION BETWEEN THE MASTER SIDE 

AND THE SLAVE SIDE  
 

 Time Delay (ms) 
Beijing 

 

Shenzhen 

 

Takamatsu 
MIN 25.20  53.80  83.60 
MAX 54.80  85.60  215.80 
Ave 38.43  66.45  109.80 

 
For a quantitative analysis of the communication delay 

between the master side and slave side, the minimum, 
maximum and average value are calculated. As recorded in 
Table I, when the slave side is in Beijing, the maximum time 
delay is 54.80 ms, the minimum is 25.20 ms, and the average 
is 38.43 ms. When the slave side is in Shenzhen, the maximum 
time delay is 85.60 ms, the minimum is 53.80 ms, and the 
average is 66.45 ms. When the slave side is in Takamatsu, the 
maximum time delay is 215.80 ms, the minimum is 83.60 ms, 
and the average is 109.80 ms. The time delay increases 
significantly after 6 p.m. Regardless of the slave side’s 
location, the communication delay meets the requirements, 
remaining below 300 ms. 

 
Fig. 10.  Motion angles and contact force of master side (in Beijing City) and slave side (a)(d) slave side in Beijing City (b)(e) slave side in 

Shenzhen City (c)(f) slave side in Takamatsu City. 
 

 

Fig. 11.  Histogram of average delay of data transmission between master side and slave side. 
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2) Control delay 
 This section analyzes the control delay of the slave motor. 

Fig. 12 shows the motion angles between the client PC and the 
microcontroller. The blue line represents the client signal 
received from the master PC, the red line represents the client 
signal received from the microcontroller, and the orange line 
represents the motor angle recorded by the client PC. Both the 
total delay (including motor control and serial transmission) 
and serial transmission delay are recorded. Thus, the delay of 
motion control can be calculated, as shown in Table II.  
 

 

Fig. 12.  Motion angles between Client PC and microcontroller (a) motion 
angles of the 4th DoF (b) motion angles of the 5th DoF (c) motion angles 
of the 6th DoF (d) partial zoom of the 4th DoF € partial zoom of the 5th 
DoF (f) partial zoom of the 6th DoF 
 

TABLE II 
THE TIME DELAY BETWEEN THE CLIENT PC AND MICROCONTROLLER 

 
 Delay of motor 

control and serial 
transmission (ms) 

Delay of serial 
transmission (ms) 

Delay of 
motor control 
(ms) 

4th DoF 138 16 122 
5th DoF 266 17 249 
6th DoF 226 17 209 

This approach enables accurate isolation and quantification 
of delays across different components of the communication 
chain, thereby providing a foundation for optimizing the 
control system. 

C. The Results and Evaluation of the Two-branch CNN 
Network 

In this section, the proposed dual-input CNN model is 
presented and discussed. To evaluate the effect of the model 
in suppressing intra-subject and inter-subject variability 
during the continuous motion of the elbow joint, comparisons 
are made between the prediction results of the user-dependent 
scenario and the user-independent scenario. Both the user-
dependent and user-independent models are evaluated using 
five-fold cross-validation.  

In the user-specific (user-dependent) scenario, individual 
models are trained and evaluated using each user’s own data. 
Specifically, the data from each subject is divided into five 
subsets, in which four subsets are used for training, and 
another subset is used for testing. This process is repeated five 
iterations, with a different subset selected as the test set in 
each iteration, while the remaining four subsets form the 
training set. Ultimately, the model’s performance is evaluated 
based on the average result across all five iterations. This 
approach reduces bias due to data partitioning and provides a 
more stable performance estimation. Fig. 13 shows the angle 
estimation results and error curves based on sEMG, IMU and 
the fused signal. Table III summarizes the estimation results 
for the user-dependent scenario, where five subject-dependent 
models are obtained. 

Additionally, one-way ANOVA is used to assess the 
statistical difference among different models in the user-
specific scenario. The RMSE between the estimation angles 
based on the fusion model and the reference (vision-based) 
measurement is 4.1577°, indicating that the estimation error is 
relatively small. The RMSE of the fusion model are 
respectively significantly less than that of the sEMG model 
(11.9726°, p < 10-4) and the IMU model (4.7902°, p < 10-4). 
Compared to the IMU and sEMG models alone, the fusion 
model achieved RMSE reductions of 12.98% and 66.43%, 
respectively. These results demonstrate that the fusion 
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Fig 13.  Angle estimation result and error curve. (a) result of angle estimation (b) partial zoom of the results of angle estimation (c) error of 
angle estimation (d) partial zoom of the error of angle estimation.  
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strategy significantly enhances prediction accuracy in the 
user-dependent scenario. 

In the user-independent scenario, the data partitioning 
strategy differs from that used in the user-dependent situation. 
Specifically, the datasets from the five different users are 
combined into a single comprehensive dataset. The following 
procedure is then implemented: in each iteration, data from 
four users is selected as the training set, and the data from the 
remaining one user serves as the test set. This process is 
repeated five times so that each user’s data is used as the test 
set exactly once. Table IV presents the estimation results in 
the user-independent scenario. Additionally, one-way 
ANOVA is also used to assess the statistical difference of 
different models in the user-independent scenario. The RMSE 
between the estimation angles based on the fusion model and 
the reference (vision-based) measurement is 5.2478 ° , 
indicating that the estimation error remains relatively small. 

The RMSE of the fusion model are respectively significantly 
less than that of the sEMG model (14.9586°, p < 10-4) and the 
IMU model (6.5897°, p < 10-4). Compared to the IMU and 
sEMG models alone, the fusion model achieved RMSE 
reductions of 15.03% and 61.94%, respectively. These results 
demonstrate that the fusion model significantly enhances 
prediction accuracy in the user-independent case, highlighting 
its effectiveness in cross-user applications. 

Whether for the user-specific or user-independent scenario, 
the final performance evaluation is based on the average of the 
five cross-validation iterations. This approach not only helps 
to reduce the random errors caused by data partitioning but 
also provides more reliable and repeatable performance 
metrics. Through the above methods, the generalization 
ability and stability of the model are ensured in different 
scenarios, thereby laying a solid theoretical foundation for its 
practical application. 

TABLE III 
THE ESTIMATION RESULTS FOR THE USER-DEPENDENT SITUATION 

 
Person 

No. Indicator sEMG IMU sEMG+IMU 
ave std ave std ave std 

S1 
RMSE (°) 13.1445 1.7712 7.4185 0.1935 6.6583 0.2034 
MAE (°) 9.3399 1.2575 5.8645 0.2692 5.0953 0.2154 

R 0.9586 0.0065 0.9860 0.0024 0.9880 0.0012 

S2 
RMSE (°) 12.6922 1.4535 3.3365 0.2775 2.6635 0.2951 
MAE (°) 9.4286 1.4278 2.6129 0.3202 2.0358 0.2211 

R 0.9351 0.0103 0.997 0.0009 0.9971 0.0005 

S3 
RMSE (°) 9.8607 1.9426 3.6694 0.6218 3.1789 0.4529 
MAE (°) 7.2343 1.4703 2.9328 0.4446 2.5089 0.4181 

R 0.9622 0.0117 0.9958 0.0023 0.9968 0.0007 

S4 
RMSE (°) 11.2462 1.4689 4.8573 0.6608 4.3236 0.8472 
MAE (°) 7.8934 0.9330 3.6293 0.3707 3.1609 0.5960 

R 0.9503 0.0123 0.9916 0.0024 0.9941 0.0024 

S5 
RMSE (°) 14.5642 2.2624 4.4465 0.8738 3.8241 0.5861 
MAE (°) 10.1878 1.5482 3.4551 0.6239 2.8668 0.4429 

R 0.9460 0.0201 0.9958 0.0013 0.9971 0.0007 

S6 
RMSE (°) 13.7985 1.6521 6.5485 0.2321 5.3218 0.2456 
MAE (°) 9.2354 1.4571 4.9847 0.2587 4.2158 0.2451 

R 0.9596 0.0059 0.9897 0.0021 0.9890 0.0011 

S7 
RMSE (°) 12.1545 1.5415 4.6514 0.6487 4.1258 0.7985 
MAE (°) 8.1247 0.8691 3.8974 0.3745 3.2578 0.5781 

R 0.9498 0.0098 0.9845 0.0036 0.9924 0.0025 

S8 
RMSE (°) 10.2454 1.5641 4.1254 0.8941 3.6984 0.5614 
MAE (°) 8.4154 1.4545 3.2581 0.5784 2.9687 0.5012 

R 0.9562 0.0089 0.9921 0.0016 0.9958 0.0009 

S9 
RMSE (°) 10.4545 1.4541 3.9544 0.5641 3.5684 0.5681 
MAE (°) 8.5012 1.6894 3.4512 0.4685 3.0124 0.3687 

R 0.9687 0.0045 0.9899 0.0054 0.9987 0.0013 

S10 
RMSE (°) 11.5654 1.5689 4.8944 0.5671 4.2145 0.8911 
MAE (°) 8.0245 0.9815 3.8451 0.4512 3.1628 0.5741 

R 0.9609 0.0204 0.9909 0.0050 0.9934 0.0012 

Ave 
RMSE (°) 11.9726 1.6679 4.7902 0.5534 4.1577 0.5449 
MAE (°) 8.6385 1.3088 3.7931 0.4160 3.2285 0.4161 

R 0.9547 0.0110 0.9913 0.0027 0.9942 0.0013 
 

TABLE IV 
THE ESTIMATION RESULTS FOR THE USER-INDEPENDENT SITUATION 

 

Indicator sEMG IMU sEMG+IMU 
ave std ave std ave std 

RMSE (°) 14.9586 1.8925 6.5897 1.3587 5.2478 1.5984 
MAE (°) 11.3585 1.6358 5.2478 0.8225 4.5897 1.3248 

R 0.9328 0.0203 0.9868 0.0061 0.9931 0.0030 
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V. DISCUSSION  
As shown in Table V, the proposed rehabilitation system 

offers several advantages over existing systems: Firstly, it 
incorporates a design with three DoFs, offering greater 
flexibility and adaptability compared to systems with only one 
DoF in previous studies. Secondly, the use of Wide Area 
Network (WAN) enables broader coverage and higher data 
transmission capacity compared to Local Area Networks 
(LANs) or Bluetooth-based solutions. Thirdly, the home-
based nature of the system makes it suitable for deployment 
in home-based environments, significantly improving user 
convenience and accessibility. Additionally, the integration of 
haptic feedback plays a crucial role in enhancing user 
engagement and providing a more immersive rehabilitation 
experience. Finally, as an sEMG-driven system, it operates 
based on sEMG signals without requiring individualized 
calibration, thereby enhancing its generalizability and ease of 
use. 

Telerehabilitation involves the use of internet technology to 
enable patients to access professional rehabilitation services 
remotely, without the need to visit a medical facility in person. 
Bilateral rehabilitation involves simultaneous training of both 
the affected and the unaffected limb of patients, aiming to 
promote neuroplasticity and enhance motor function recovery. 
By integrating these two approaches, a more flexible and 
efficient rehabilitation model can be developed, particularly 
benefiting stroke survivors and individuals requiring long-
term rehabilitation support. Based on the above, a home-based 
dual-mode rehabilitation system using the upper limb 
exoskeleton is built. This system aims to integrate the 
advantages of telerehabilitation and bilateral rehabilitation to 
deliver efficient, convenient and personalized rehabilitation 
treatment for stroke patients. To validate the effectiveness of 
the telerehabilitation platform, experiments are conducted in 
three different locations: Beijing, Shenzhen and Takamatsu. 
Fig. 10 shows the motion trajectory and contact force 
variations at the slave side, indicating that the system can 
effectively transmit the therapist’s direct operation and detect 
the contact force between the affected limb and the 
exoskeleton, even over long distances. Fig. 11 presents the 
AVE and STD of hourly communication delays recorded from 
7:00 a.m. to 8:00 p.m. in histogram form, visualizing both the 
delay magnitudes and their variability across different 
locations. 

Quantitative analysis presented in Table I further supports 
the above observation. Notably, the maximum communication 

delay across all locations remains below 300 ms [19], 
satisfying the real-time requirements of rehabilitation 
systems. It is worth noting that while the delay in Takamatsu 
is higher, it remains within an acceptable range and does not 
compromise the system’s functional performance or clinical 
usability. In the control delay evaluation. Fig. 12 depicts the 
motion angle differences between the client PC and the 
microcontroller, while Table II provides detailed 
measurements of total delay, serial transmission delay and 
motion control delay under three different DoFs. The results 
show that the motion control delay accounts for most of the 
time, such as the motion control delay of 249 ms for the 5th 
DoF.  

In the rehabilitation process, latency plays a crucial role. It 
not only affects the smoothness of interactions between users 
and therapists but also directly impacts the quality of 
rehabilitation outcomes. Firstly, in rehabilitation activities 
that require immediate feedback, any noticeable delay can 
undermine this immediacy, making it difficult for users to 
adjust their actions based on the feedback they receive. This 
is particularly true in training processes that utilize haptic 
feedback mechanisms, where latency can diminish the 
system’s sense of immersion and the authenticity of the 
interaction, thereby reducing user engagement and 
satisfaction. Secondly, from a perspective of rehabilitation 
effectiveness, latency can significantly compromise the 
accuracy and efficacy of training. The real-time correction of 
erroneous movements is a critical component of rehabilitation 
training. Delays can lead to late corrections, further degrading 
the quality of rehabilitation even causing secondary injuries. 
Therefore, when designing rehabilitation solutions, 
minimizing latency and ensuring rapid response are especially 
important. Future directions include leveraging technologies 
such as edge computing, optimized data transmission methods 
and adaptive latency compensation to minimize latency. 
These approaches can provide more effective support for real-
time feedback and interaction, thereby improving user 
experience and rehabilitation outcomes while ensuring safety 
and efficiency throughout the process. 

In the bilateral rehabilitation, a dual-input CNN model is 
used to suppress both the intra-subject and inter-subject 
variability of sEMG signals during the continuous elbow 
movements. Furthermore, the user-dependent and user-
independent predictions are realized. The five-fold cross-
validation method ensures the reliability and repeatability of 
evaluation metrics and reduces random errors caused by data 
segmentation. The results demonstrate the effectiveness of the 

TABLE V 
THE COMPARISON WITH OTHER REHABILITATION SYSTEMS 

 

 DoF Communication 
mode 

Home-based/ 
Portability 

Haptic 
feedback 

sEMG-driven subject-
independent 

Yang et al. [4] One LAN Yes Yes No 
Liu et al. [5] One LAN Yes Yes No 

Patel et al. [12]  Six LAN No Yes No 
Chen et al. [22]  Six Bluetooth. Yes No No 

This study Three WAN Yes Yes Yes 
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subject-independent prediction with the dual-input CNN 
model. The comparison of different methods’ performance is 
recorded in Table VI. Compared with other methods, the R 
obtained by the proposed method is the highest (0.9926). The 
RMSE (5.83) obtained by the proposed method is the second 
lowest, just above the RMSE (4.07) reported by Sun et al. The 
method proposed by Sun et al. focuses on modeling for each 
subject, i.e., addressing intra-subject variability. In contrast, 
the method proposed in this study aims at multi-subject 
modeling, accounting for both intra-subject variability and 
inter-subject variability. 
 

TABLE VI 
THE COMPARISON WITH OTHER PREDICTION METHODS 

 
 RMSE (°) R 

Yang et al. [20] 20.44 0.8940 
Zhao et al. [21] 17.59 0.9100 

Li et al. [6] 15.26 0.9290 
Yang et al. [22] 13.668 0.8650 
Yang et al. [16] 12.99 0.8840 
Sun et al. [18] 4.07 0.9800 

This study 5.83 0.9926 
 

In summary, this study demonstrates that the tele-
rehabilitation system can provide low-latency and stable 
communication services across various regions, while the 
prediction model based on the dual-input CNN can effectively 
deal with inter-subject variability. By integrating tele-training 
and bilateral training, a home-based rehabilitation system is 
constructed. This system-integrated rehabilitation solution not 
only overcomes geographical barriers by offering continuous 
and professional rehabilitation guidance to patients but also 
enhances potential value through several specific clinical 
application scenarios: (1) Community Health Centers: 
Patients at community health centers can access personalized 
rehabilitation training under the guidance of professional 
therapists via the tele-rehabilitation system. (2) Home-based 
Rehabilitation Environment: For patients with mobility 
limitations or those residing in remote areas, a home-based 
rehabilitation system is especially valuable, which enables 
individuals to perform rehabilitation exercises conveniently 
and safely at home. (3) Hospital Rehabilitation Departments: 
Within hospital rehabilitation departments, the tele-
rehabilitation system serves as a complementary tool to 
traditional face-to-face therapy. It enables continuous post-
discharge care, thereby helping to reduce readmission rates. 

Despite the contributions of this study, two important 
limitations should be addressed in future research. Firstly, the 
relatively small sample size may increase the risk of sampling 
bias and limit the generalizability across diverse population 
characteristics. Therefore, although our preliminary results 
suggest the potential benefits of the proposed system, these 
findings require further validation in larger and more diverse 
cohorts to confirm their reliability and broad applicability. 
Secondly, this study has not yet been validated through 
clinical trials. While promising results are obtained in 
controlled laboratory settings, the reproducibility and real-

world feasibility of these findings in clinical environments 
remain to be confirmed. The next step should involve 
designing and conducting rigorous clinical trials to rigorously 
assess the safety and efficacy of the proposed system across 
diverse patient populations. Additionally, future work could 
explore the integration of electrical stimulation, combining 
the movement-based rehabilitation with neuromuscular 
stimulation as complementary therapeutic strategies [23]. 

To further enhance the practical value of the system, more 
attention should be directed towards the user experience, 
particularly in terms of comfort and usability. Based on the 
preliminary user feedback, several key areas have been 
identified for improvement in future work: (1) Ergonomic 
Design Optimization: User feedback indicates that prolonged 
use of the current system may lead to physical discomfort. 
Future work will focus on refining the device’s design to 
better conform to ergonomic standards and improve long-term 
wearability. (2) Simplifying Operation Processes: Although 
the current system’s user interface is relatively intuitive, users 
still face a learning curve when operating some advanced 
features. Future iterations will aim to simplify operation 
workflows, develop more user-friendly interfaces, and 
provide detailed user guides. In summary, the continuous 
system improvement requires the establishment of an 
effective user feedback mechanism. Future work will not only 
focus on technological advancements but also involve 
regularly collecting user opinions to make corresponding 
adjustments.  

VI. CONCLUSION  
Focused on robot-assisted rehabilitation for individuals 

with upper limb hemiplegia, a dual-mode rehabilitation 
system is proposed, including the therapist-in-the-loop tele-
training based on a cloud server and the bilateral training 
based on sEMG and IMU signals. Tele-rehabilitation can 
expand the coverage of training, provide professional 
guidance and enhance convenience. The feasibility of the tele-
rehabilitation system is verified through experiments 
conducted across three different regions. In the bilateral 
training, the subject-independent prediction of continuous 
movements is realized through a dual-input network based on 
sEMG and IMU. This approach improves prediction accuracy 
of motion intention while also considering the naturalness of 
human–robot interaction. The dual-mode rehabilitation 
system based on tele-training and bilateral training realizes the 
combination of therapist guidance and self-training, which is 
of great significance for home-based rehabilitation of stroke 
patients. 
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